1
BITSAT 2020
MCQ (Single Correct Answer)
+3
-1

The solution of differential equation $$(x{y^5} + 2y)dx - xdy = 0$$, is

A
$$9{x^8} + 4{x^9}{y^4} = 9{y^4}C$$
B
$$9{x^8} - 4{x^9}{y^4} - 9{y^4}C = 0$$
C
$${x^8}(9 + 4{y^4}) = 10{y^4}C$$
D
None of these
2
BITSAT 2020
MCQ (Single Correct Answer)
+3
-1

The solution set of $${{|x - 2|\, - 1} \over {|x - 2|\, - 2}} \le 0$$ is

A
[0, 1] $$\cup$$ (3, 4)
B
[0, 1] $$\cup$$ [3, 4]
C
[$$-$$1, 1] $$\cup$$ (3, 4]
D
None of these
3
BITSAT 2020
MCQ (Single Correct Answer)
+3
-1

Let $$f(x) = {x \over {\sqrt {1 + {x^2}} }}$$, $$\underbrace {fofofo.....of(x)}_{x\,times}$$ is

A
$${x \over {\sqrt {1 + \left( {\sum\limits_{r = 1}^n r } \right){x^2}} }}$$
B
$${x \over {\sqrt {1 + \left( {\sum\limits_{r = 1}^n 1 } \right){x^2}} }}$$
C
$${\left( {{x \over {\sqrt {1 + {x^2}} }}} \right)^x}$$
D
$${x \over {\sqrt {1 + n{x^2}} }}$$
4
BITSAT 2020
MCQ (Single Correct Answer)
+3
-1

If $${\log _5}{{(a + b)} \over 3} = {{{{\log }_5}a + {{\log }_5}b} \over 2}$$, then $${{{a^4} + {b^4}} \over {{a^2}{b^2}}}$$ is equal to

A
50
B
47
C
44
D
53
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12