1
BITSAT 2020
MCQ (Single Correct Answer)
+3
-1

Let $$f(x) = {a_0} + {a_1}{x^2} + {a_2}{x^4} + {a_3}{x^6} + ... + {a_n}{x^{2n}}$$ be a polynomial in a real variable x with $$0 < {a_1} < {a_2} < {a_3} < .... < {a_n}$$, the function f(x) has

A
neither a maxima nor a minima
B
only one maxima
C
both maxima and minima
D
only one minima
2
BITSAT 2020
MCQ (Single Correct Answer)
+3
-1

Given that $$f(x) = 2{x^3} + {x^4} + \log x$$ and assuming g to be the inverse function of f, compute the value of g'(3).

A
$${1 \over 9}$$
B
$${1 \over 7}$$
C
$${1 \over 11}$$
D
$${1 \over 8}$$
3
BITSAT 2020
MCQ (Single Correct Answer)
+3
-1

A line passing through P(3, 7, 1) and R(2, 5, 7) meet the plane 3x + 2y + 11z $$-$$ 9 = 0 at Q. Then PQ is equal to

A
$${{5\sqrt {41} } \over {59}}$$
B
$${{\sqrt {41} } \over {59}}$$
C
$${{50\sqrt {41} } \over {59}}$$
D
$${{25\sqrt {41} } \over {59}}$$
4
BITSAT 2020
MCQ (Single Correct Answer)
+3
-1
$$\int {{{8{x^{43}} + 13{x^{38}}} \over {{{({x^{13}} + {x^5} + 1)}^4}}}dx} $$ equals to
A
$${{{x^{39}}} \over {3{{({x^{13}} + {x^5} + 1)}^3}}} + C$$
B
$${{{x^{39}}} \over {{{({x^{13}} + {x^5} + 1)}^3}}} + C$$
C
$${{{x^{39}}} \over {5{{({x^{13}} + {x^5} + 1)}^3}}} + C$$
D
None of these
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12