1
AP EAPCET 2024 - 22th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $M_1$ and $M_2$ are the maximum values of $\frac{1}{11 \cos 2 x+60 \sin 2 x+69}$ and $3 \cos ^2 5 x+4 \sin ^2 5 x$ respectively, then $\frac{M_1}{M_2}=$

A
$\frac{65}{2}$
B
$\frac{1}{32}$
C
$\frac{8}{3}$
D
2
2
AP EAPCET 2024 - 22th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

$$ 4 \cos \frac{\pi}{7} \cos \frac{\pi}{5} \cos \frac{2 \pi}{7} \cos \frac{2 \pi}{5} \cos \frac{4 \pi}{7}= $$

A
$-\frac{1}{8}$
B
$\frac{1}{32}$
C
$-\frac{1}{32}$
D
$\frac{1}{8}$
3
AP EAPCET 2024 - 22th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

In a $\triangle A B C$, if $A, B$ and $C$ are in arithmetic progression and $\cos A+\cos B+\cos C=\frac{1+\sqrt{2}+\sqrt{3}}{2 \sqrt{2}}$, then $\tan A$ :

A
$\sqrt{3}$
B
$2+\sqrt{3}$
C
1
D
$2-\sqrt{3}$
4
AP EAPCET 2024 - 22th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The general solution of the equation $\tan x+\tan 2 x-\tan 3 x=0$ is
A
$\left\{x \left\lvert\, x=n \pi \pm \frac{\pi}{3}\right.\right.$ or $\left.\frac{n \pi}{2}, n \in Z\right\}$
B
$\left\{x \left\lvert\, x=n \pi \pm \frac{\pi}{3}\right.\right.$ or $\left.n \pi, n \in Z\right\}$
C
$\left\{x \left\lvert\, x=n \pi \pm \frac{\pi}{3}\right.\right.$ or $\frac{n \pi}{2}$ or $\left.n \pi, n \in Z\right\}$
D
$\left\{x \left\lvert\, x=n \pi \pm \frac{\pi}{6}\right.\right.$ or $\left.\frac{n \pi}{2}, n \in Z\right\}$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12