1
AP EAPCET 2024 - 21th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If the Rolle's theorem is applicable for the function $f(x)$ defined by $f(x)=x^3+P x-12$ on $[0,1]$ then the value of $C$ of the Rolle's theorem is
A
$\pm \frac{1}{\sqrt{3}}$
B
$-\frac{1}{\sqrt{3}}$
C
$\frac{1}{\sqrt{3}}$
D
$\frac{1}{3}$
2
AP EAPCET 2024 - 21th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The number of all the value of $x$ for which the function $f(x)=\sin x+\frac{1-\tan ^2 x}{1+\tan ^2 x}$ attains it maximum value on [ $0.2 \pi$ ] is
A
4
B
1
C
2
D
infinite
3
AP EAPCET 2024 - 21th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $x \in\left[2 n \pi-\frac{\pi}{4}, 2 n \pi+\frac{3 \pi}{4}\right]$ and $n \in Z$, then $\int \sqrt{1-\sin 2 x} d x=$
A
$-\cos x+\sin x+c$
B
$\cos x+\sin x+c$
C
$-\cos x-\sin x+c$
D
$\cos x-\sin x+c$
4
AP EAPCET 2024 - 21th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$\int e^x\left(\frac{x+2}{x+4}\right)^2 d x=$
A
$-\frac{x e^x}{(x+4)^2}+c$
B
$-\frac{x e^x}{(x+4)}+c$
C
$\frac{x e^x}{(x+4)}+c$
D
$\frac{2 x e^x}{(x+4)}+c$.
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12