1
AP EAPCET 2024 - 18th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
In a regular hexagon $A B C D E F, \mathbf{A B}=\mathbf{a}$ and $\mathbf{B C}=\mathbf{b}$, then $F A=$
A
$\mathbf{a}-\mathbf{b}$
B
$a+b$
C
$\mathbf{b}-\mathbf{a}$
D
$2 \mathbf{b}-\mathbf{a}$
2
AP EAPCET 2024 - 18th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If the points with position vectors $(\alpha \hat{\mathbf{i}}+10 \hat{\mathbf{j}}+13 \hat{\mathbf{k}}),(6 \hat{\mathbf{i}}+11 \hat{\mathbf{j}}+11 \hat{\mathbf{k}}),\left(\frac{9}{2} \hat{\mathbf{i}}+\beta \hat{\mathbf{j}}-8 \hat{\mathbf{k}}\right)$ are collinear, then $(19 \alpha-6 \beta)^2=$
A
16
B
36
C
25
D
49
3
AP EAPCET 2024 - 18th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $\mathbf{f}, \mathbf{g}, \mathbf{h}$ be mutually orthogonal vectors of equal magnitudes, then the angle between the vectors $\mathbf{f}+\mathbf{g}+\mathbf{h}$ and $\mathbf{h}$ is
A
$\cos ^{-1}\left(\frac{\sqrt{3}}{4}\right)$
B
$\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
C
$\pi-\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
D
$\pi-\cos ^{-1}\left(\frac{\sqrt{3}}{4}\right)$
4
AP EAPCET 2024 - 18th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
Let $\mathbf{a}, \mathbf{b}$ be two unit vectors. If $\mathbf{c}=\mathbf{a}+2 \mathbf{b}$ and $\mathbf{d}=5 \mathbf{a}-4 \mathbf{b}$ are perpendicular to each other, then the angle between $a$ and $b$ is
A
$\frac{\pi}{6}$
B
$\frac{\pi}{4}$
C
$\frac{\pi}{3}$
D
$\frac{\pi}{8}$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12