1
AP EAPCET 2024 - 18th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The differential equation representing the family of circles having their centres of Y -axis is $\left(y_1=\frac{d y}{d x}\right.$ and $\left.y_2=\frac{d^2 y}{d x^2}\right)$
A
$y_2=y\left(y_1^2+1\right)$
B
$y_2=x y\left(y_1^2+1\right)$
C
$x_2=y_1\left(y_1^2+1\right)$
D
$x y_2=y\left(y_1^2+1\right)$
2
AP EAPCET 2024 - 18th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The general solution of the differential equation $\left(\sin y \cos ^2 y-x \sec ^2 y\right) d y=(\tan y) d r$, is
A
$\tan y=3 x \cos ^3 y+c$
B
$x(\sec y+\tan y)=\cos ^2 y+c$
C
$y \sin y=x^2 \cos ^2 y+c$
D
$3 x \tan y+\cos ^3 y=c$
3
AP EAPCET 2024 - 18th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The general solution of the differential equation $(x-y-1) d y=(x+y+1) d x$ is
A
$\tan ^{-1}\left(\frac{y+1}{x}\right)-\frac{1}{2} \log \left(x^2+y^2+2 y+1\right)=0$
B
$(x-y)+\log (x+y)=c$
C
$y^2-x^2+x y-3 y-x=c$
D
$(x-y-1)^2(x+y+1)^3=c$
4
AP EAPCET 2024 - 18th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
Match the following.
(a) Thermal conductivity (i) $\left[\mathrm{MLT}^{-3} \mathrm{~K}^{-1}\right]$
(b) Boltzmann constant (ii) $\left[M^0 L^2 T^{-2} K^{-1}\right]$
(c) Latent heat (iii) $\left[M L^2 T^{-2} K^{-1}\right]$
(d) Specific heat (iv) $\left[M^0 L^2 T^{-2}\right]$
A
$a-i, b-iii, c-iv, d-ii$
B
$a-i, b-ii, c-iv, d-iii$
C
$a-iii, b-ii, c-i, d-iv$
D
$a-ii, b-i, c-iii, d-iv$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12