Let $$O$$ be the origin and $$P$$ be a point which is at a distance of 3 units from the origin. If the direction ratios of $$\overline{O P}$$ are $$(1,-2,-2)$$, then the coordinates of $$P$$ are
$$\lim _\limits{z \rightarrow 1} \frac{z^{(1 / 3)}-1}{z^{(1 / 6)}-1}$$ is equal to
$$f(x)=\left\{\begin{array}{cc} \frac{72^x-9^x-8^x+1}{\sqrt{2}-\sqrt{1+\cos x}}, & x \neq 0 \\ K \log 2 \log 3, & x=0 \end{array}\right.$$
Find the value of $$k$$ for which the function $$f$$ is continuous.
If the function $$f(x)$$, defined below is continuous in the interval $$[0, \pi]$$, then $$f(x)=\left\{\begin{array}{cc}x+a \sqrt{2}(\sin x) & , \quad 0 \leq x < \frac{\pi}{4} \\ 2 x(\cot x)+b, & \frac{\pi}{4} \leq x \leq \frac{\pi}{2} \\ a(\cos 2 x)-b(\sin x), & \frac{\pi}{2} < x \leq \pi\end{array}\right.$$