Let a and b be non-zero real numbers such that $$ab=5/2$$ and given $$A = \left[ {\matrix{ a & { - b} \cr b & a \cr } } \right]$$ and $$A{A^T} = 20I$$ ($$l$$ is unit matrix), then the equation whose roots are a and b is
If $$A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right], 10 B=\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3\end{array}\right]$$ and $$B=A^{-1}$$, then the value of $$\alpha$$ is
The rank of the matrix $$\left[\begin{array}{ccc}4 & 2 & (1-x) \\ 5 & k & 1 \\ 6 & 3 & (1+x)\end{array}\right]$$ is 1 , then,
If $$a_1, a_2, \ldots . a_9$$ are in GP, then $$\left|\begin{array}{lll}\log a_1 & \log a_2 & \log a_3 \\ \log a_4 & \log a_5 & \log a_6 \\ \log a_7 & \log a_8 & \log a_9\end{array}\right|$$ is equal to