1
CBSE 12th Math (Term 1) Paper 2021-22
MCQ (Single Correct Answer)
+1
-0
Let matrix $$X = [{x_{ij}}]$$ is given by $$X = \left[ {\matrix{ 1 & { - 1} & 2 \cr 3 & 4 & { - 5} \cr 2 & { - 1} & 3 \cr } } \right]$$. Then the matrix $$Y = [{m_{ij}}]$$, where mij = Minor of xij, is
A
$$\left[ {\matrix{ 7 & { - 5} & { - 3} \cr {19} & 1 & { - 11} \cr { - 11} & 1 & 7 \cr } } \right]$$
B
$$\left[ {\matrix{ 7 & { - 19} & { - 11} \cr 5 & { - 1} & { - 1} \cr 3 & {11} & 7 \cr } } \right]$$
C
$$\left[ {\matrix{ 7 & {19} & { - 11} \cr { - 3} & {11} & 7 \cr { - 5} & { - 1} & { - 1} \cr } } \right]$$
D
$$\left[ {\matrix{ 7 & {19} & { - 11} \cr { - 1} & { - 1} & 1 \cr { - 3} & { - 11} & 7 \cr } } \right]$$
2
CBSE 12th Math (Term 1) Paper 2021-22
MCQ (Single Correct Answer)
+1
-0
A function f : R $$\to$$ R defined by f(x) = 2 + x2 is
A
not one-one
B
one-one
C
not onto
D
neither one-one nor onto
3
CBSE 12th Math (Term 1) Paper 2021-22
MCQ (Single Correct Answer)
+1
-0
A Linear Programming Problem is as follows:

Maximize/Minimize objective function Z = 2x $$-$$ y + 5

Subject to the constraints

3x + 4y $$\le$$ 60

x + 3y $$\le$$ 30

x $$\ge$$ 0, y $$\ge$$ 0

If the corner points of the feasible region are A (0, 10), B (12, 6), C (20, 0) and O (0, 0) then which of the following is true?
A
Maximum value of Z is 40
B
Minimum value of Z is $$-$$5
C
Difference of maximum and minimum values of Z is 35
D
At two corner points, value of Z are equal
4
CBSE 12th Math (Term 1) Paper 2021-22
MCQ (Single Correct Answer)
+1
-0
If x = $$-$$4 is a root of $$\left| {\matrix{ x & 2 & 3 \cr 1 & x & 1 \cr 3 & 2 & x \cr } } \right| = 0$$, then the sum of the other two roots is
A
4
B
$$-$$3
C
2
D
5
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12