1
CBSE 12th Math (Term 1) Paper 2021-22
MCQ (Single Correct Answer)
+1
-0
The maximum value of $${\left( {{1 \over x}} \right)^{x}}$$ is
A
e1/e
B
e
C
$${\left( {{1 \over e}} \right)^{1/e}}$$
D
ee
2
CBSE 12th Math (Term 1) Paper 2021-22
MCQ (Single Correct Answer)
+1
-0
Let matrix $$X = [{x_{ij}}]$$ is given by $$X = \left[ {\matrix{ 1 & { - 1} & 2 \cr 3 & 4 & { - 5} \cr 2 & { - 1} & 3 \cr } } \right]$$. Then the matrix $$Y = [{m_{ij}}]$$, where mij = Minor of xij, is
A
$$\left[ {\matrix{ 7 & { - 5} & { - 3} \cr {19} & 1 & { - 11} \cr { - 11} & 1 & 7 \cr } } \right]$$
B
$$\left[ {\matrix{ 7 & { - 19} & { - 11} \cr 5 & { - 1} & { - 1} \cr 3 & {11} & 7 \cr } } \right]$$
C
$$\left[ {\matrix{ 7 & {19} & { - 11} \cr { - 3} & {11} & 7 \cr { - 5} & { - 1} & { - 1} \cr } } \right]$$
D
$$\left[ {\matrix{ 7 & {19} & { - 11} \cr { - 1} & { - 1} & 1 \cr { - 3} & { - 11} & 7 \cr } } \right]$$
3
CBSE 12th Math (Term 1) Paper 2021-22
MCQ (Single Correct Answer)
+1
-0
A function f : R $$\to$$ R defined by f(x) = 2 + x2 is
A
not one-one
B
one-one
C
not onto
D
neither one-one nor onto
4
CBSE 12th Math (Term 1) Paper 2021-22
MCQ (Single Correct Answer)
+1
-0
A Linear Programming Problem is as follows:

Maximize/Minimize objective function Z = 2x $$-$$ y + 5

Subject to the constraints

3x + 4y $$\le$$ 60

x + 3y $$\le$$ 30

x $$\ge$$ 0, y $$\ge$$ 0

If the corner points of the feasible region are A (0, 10), B (12, 6), C (20, 0) and O (0, 0) then which of the following is true?
A
Maximum value of Z is 40
B
Minimum value of Z is $$-$$5
C
Difference of maximum and minimum values of Z is 35
D
At two corner points, value of Z are equal
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12