1
WB JEE 2021
MCQ (Single Correct Answer)
+1
-0.25
Change Language
$$\int\limits_1^3 {{{\left| {x - 1} \right|} \over {\left| {x - 2} \right| + \left| {x - 3} \right|}}dx} $$ is equal to
A
$$1 + {4 \over 3}{\log _e}3$$
B
$$1 + {3 \over 4}{\log _e}3$$
C
$$1 - {4 \over 3}{\log _e}3$$
D
$$1 - {3 \over 4}{\log _e}3$$
2
WB JEE 2021
MCQ (Single Correct Answer)
+1
-0.25
Change Language
The value of the integral $$\int\limits_{ - {1 \over 2}}^{{1 \over 2}} {{{\left\{ {{{\left( {{{x + 1} \over {x - 1}}} \right)}^2} + {{\left( {{{x - 1} \over {x + 1}}} \right)}^2} - 2} \right\}}^{1/2}}} dx$$ is equal to
A
$${\log _e}\left( {{4 \over 3}} \right)$$
B
$$4\,{\log _e}\left( {{3 \over 4}} \right)$$
C
$$4\,{\log _e}\left( {{4 \over 3}} \right)$$
D
$${\log _e}\left( {{3 \over 4}} \right)$$
3
WB JEE 2021
MCQ (Single Correct Answer)
+1
-0.25
Change Language
If $$\int\limits_{{{\log }_e}2}^x {{{({e^x} - 1)}^{ - 1}}dx = {{\log }_e}{3 \over 2}} $$, then the value of x is
A
1
B
e2
C
log 4
D
$${1 \over e}$$
4
WB JEE 2021
MCQ (Single Correct Answer)
+1
-0.25
Change Language
The normal to a curve at P(x, y) meets the X-axis at G. If the distance of G from the origin is twice the abscissa of P then the curve is
A
a parabola
B
a circle
C
a hyperbola
D
an ellipse
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12