1
WB JEE 2018
MCQ (Single Correct Answer)
+2
-0.5
Change Language
For 0 $$ \le $$ p $$ \le $$ 1 and for any positive a, b; let I(p) = (a + b)p, J(p) = ap + bp, then
A
I(p) > J(p)
B
I(p) $$ \le $$ J(p)
C
I(p) < J(p) in $$\left[ {0,{p \over 2}} \right]$$ and I(p) > J(p) in $$\left[ {{p \over 2},\infty } \right]$$
D
I(p) < J(p) in $$\left[ {{p \over 2},\infty } \right]$$ and I(p) > J(p) in $$\left[ {0,{p \over 2}} \right]$$
2
WB JEE 2018
MCQ (Single Correct Answer)
+2
-0.5
Change Language
Let $$\overrightarrow \alpha $$ = $$\widehat i + \widehat j + \widehat k$$, $$\overrightarrow \beta $$ = $$\widehat i - \widehat j - \widehat k$$ and $${\overrightarrow \gamma }$$ = $$ - \widehat i - \widehat j - \widehat k$$ be three vectors. A vector $$\overrightarrow \delta $$, in the plane of $$\overrightarrow \alpha $$ and $$\overrightarrow \beta $$, whose projection on $${\overrightarrow \gamma }$$ is $${1 \over {\sqrt 3 }}$$, is given by
A
$$ - \widehat i - 3\widehat j - 3\widehat k$$
B
$$\widehat i - 3\widehat j - 3\widehat k$$
C
$$ - \widehat i + 3\widehat j + 3\widehat k$$
D
$$\widehat i + 3\widehat j - 3\widehat k$$
3
WB JEE 2018
MCQ (Single Correct Answer)
+2
-0.5
Change Language
Let $$\overrightarrow \alpha $$, $${\overrightarrow \beta }$$, $${\overrightarrow \gamma }$$ be the three unit vectors such that $$\overrightarrow \alpha .\overrightarrow \beta = \overrightarrow \alpha .\overrightarrow \gamma = 0$$ and the angle between $$\overrightarrow \beta $$ and $$\overrightarrow \gamma $$ is 30$$^\circ$$. Then $$\overrightarrow \alpha $$ is
A
2($$\overrightarrow \beta $$ $$ \times $$ $$\overrightarrow \gamma $$)
B
$$-$$ 2($$\overrightarrow \beta $$ $$ \times $$ $$\overrightarrow \gamma $$)
C
$$ \pm $$ 2($$\overrightarrow \beta $$ $$ \times $$ $$\overrightarrow \gamma $$)
D
($$\overrightarrow \beta $$ $$ \times $$ $$\overrightarrow \gamma $$)
4
WB JEE 2018
MCQ (Single Correct Answer)
+2
-0.5
Change Language
Let z1 and z2 be complex numbers such that z1 $$ \ne $$ z2 and |z1| = |z2|. If Re(z1) > 0 and Im(z2) < 0, then $${{{z_1} + {z_2}} \over {{z_1} - {z_2}}}$$ is
A
one
B
real and positive
C
real and negative
D
purely imaginary
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12