1
WB JEE 2018
MCQ (Single Correct Answer)
+1
-0.25
Change Language
If $$\int {f(x)} \sin x\cos xdx = {1 \over {2({b^2} - {a^2})}}\log (f(x)) + c$$, where c is the constant of integration, then f(x) is equal to
A
$${2 \over {({b^2} - {a^2})\sin 2x}}$$
B
$${2 \over {ab\sin 2x}}$$
C
$${2 \over {({b^2} - {a^2})\cos 2x}}$$
D
$${2 \over {ab\cos 2x}}$$
2
WB JEE 2018
MCQ (Single Correct Answer)
+1
-0.25
Change Language
If $$M = \int\limits_0^{\pi /2} {{{\cos x} \over {x + 2}}dx} $$, $$N = \int\limits_0^{\pi /4} {{{\sin x\cos x} \over {{{(x + 1)}^2}}}dx} $$, then the value of M $$-$$ N is
A
$$\pi$$
B
$${\pi \over 4}$$
C
$${2 \over {\pi - 4}}$$
D
$${2 \over {\pi + 4}}$$
3
WB JEE 2018
MCQ (Single Correct Answer)
+1
-0.25
Change Language
The value of the integral $$I = \int_{1/2014}^{2014} {{{{{\tan }^{ - 1}}x} \over x}} dx$$ is
A
$${\pi \over 4}$$log2014
B
$${\pi \over 2}$$log2014
C
$$\pi$$log2014
D
$${{1 \over 2}}$$log2014
4
WB JEE 2018
MCQ (Single Correct Answer)
+1
-0.25
Change Language
Let $$I = \int\limits_{\pi /4}^{\pi /3} {{{\sin x} \over x}} dx$$. Then
A
$${1 \over 2} \le I \le 1$$
B
$$4 \le I \le 2\sqrt {30} $$
C
$${{\sqrt 3 } \over 8} \le I \le {{\sqrt 2 } \over 6}$$
D
$$1 \le I \le {{2\sqrt 3 } \over {\sqrt 2 }}$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12