1
VITEEE 2022
MCQ (Single Correct Answer)
+1
-0

$$f$$ and $$g$$ are differentiable function in $$(0,1)$$ satisfying $$f(0)=2=g(\mathrm{l}), g(0)=0$$ and $$f(l)=6$$, then for some $$c \in] 0,1[$$

A
$$2 f^{\prime}(c)=g^{\prime}(c)$$
B
$$2 f^{\prime}(c)=3 g^{\prime}(c)$$
C
$$f^{\prime}(c)=g^{\prime}(c)$$
D
$$f^{\prime}(c)=2 g^{\prime}(c)$$
2
VITEEE 2022
MCQ (Single Correct Answer)
+1
-0

If $$X \phi(x)=\int_\limits5^x 3 t^2-2 \phi(t) d t, x>-2$$ and $$\phi(0)=4$$, then $$\phi(2)$$ is

A
4
B
6
C
2
D
8
3
VITEEE 2022
MCQ (Single Correct Answer)
+1
-0

The integral $$\int \frac{d x}{x^2\left(x^4+1\right)^{3 / 4}}$$ equals

A
$$\left[\frac{x^4+1}{x^4}\right]^{1 / 4}+C$$
B
$$\left(x^4+1\right)^{1 / 4}+C$$
C
$$-\left(x^4+1\right)^{1 / 4}+C$$
D
$$-\left(\frac{x^4+1}{x^4}\right)^{1 / 4}+C$$
4
VITEEE 2022
MCQ (Single Correct Answer)
+1
-0

The maximum slope of the curve $$y=\frac{1}{2} x^4-5 x^3+18 x^2-19 x$$ occurs at the point

A
$$(2,2)$$
B
$$(0,0)$$
C
$$(2,9)$$
D
$$\left(3, \frac{21}{2}\right)$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12