1
MHT CET 2021 24th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

The minimum value of the function f(x) = x log x is

A
$$-$$e
B
e
C
$$\frac{1}{e}$$
D
$$-\frac{1}{e}$$
2
MHT CET 2021 24th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the differential equation $$\frac{d y}{d x}=\tan \left(\frac{y}{x}\right)+\frac{y}{x}$$ is

A
$$\sin \left(\frac{y}{x}\right)=c y$$
B
$$\cos \left(\frac{y}{x}\right)=c y$$
C
$$\cos \left(\frac{y}{x}\right)=c x$$
D
$$\sin \left(\frac{y}{x}\right)=c x$$
3
MHT CET 2021 24th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\tan \mathrm{A}+2 \tan 2 \mathrm{~A}+4 \tan 4 \mathrm{~A}+8 \cot 8 \mathrm{~A}=$$

A
$$\tan 2 \mathrm{~A}$$
B
$$\cot \mathrm{A}$$
C
$$\tan \mathrm{A}$$
D
$$\cot 2 \mathrm{~A}$$
4
MHT CET 2021 24th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the vector equation of the plane $$\bar{r}=(2 \hat{i}+\hat{k})+\lambda \hat{i}+\mu(\hat{i}+2 \hat{j}-3 \hat{k})$$ in scalar product form is given by $$\overline{\mathrm{r}} \cdot(3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})=\alpha$$ then $$\alpha=$$

A
2
B
3
C
1
D
0
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12