1
MHT CET 2021 24th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

The minimum value of the function f(x) = x log x is

A
$$-$$e
B
e
C
$$\frac{1}{e}$$
D
$$-\frac{1}{e}$$
2
MHT CET 2021 24th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the differential equation $$\frac{d y}{d x}=\tan \left(\frac{y}{x}\right)+\frac{y}{x}$$ is

A
$$\sin \left(\frac{y}{x}\right)=c y$$
B
$$\cos \left(\frac{y}{x}\right)=c y$$
C
$$\cos \left(\frac{y}{x}\right)=c x$$
D
$$\sin \left(\frac{y}{x}\right)=c x$$
3
MHT CET 2021 24th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\tan \mathrm{A}+2 \tan 2 \mathrm{~A}+4 \tan 4 \mathrm{~A}+8 \cot 8 \mathrm{~A}=$$

A
$$\tan 2 \mathrm{~A}$$
B
$$\cot \mathrm{A}$$
C
$$\tan \mathrm{A}$$
D
$$\cot 2 \mathrm{~A}$$
4
MHT CET 2021 24th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the vector equation of the plane $$\bar{r}=(2 \hat{i}+\hat{k})+\lambda \hat{i}+\mu(\hat{i}+2 \hat{j}-3 \hat{k})$$ in scalar product form is given by $$\overline{\mathrm{r}} \cdot(3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})=\alpha$$ then $$\alpha=$$

A
2
B
3
C
1
D
0
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12