The volume of the parallelopiped whose co terminous edges are $\hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{i}}+\hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+\hat{\mathbf{j}}$ is
Let $\mathbf{a}$ and $\mathbf{b}$ be two unit vectors and $\theta$ is the angle between them. Then, $\mathbf{a}+\mathbf{b}$ is a unit vector, if
If $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$ are three non-coplanar vectors and $p, q$ and $r$ are vectors defined by $\mathbf{p}=\frac{\mathbf{a} \times \mathbf{c}}{[\mathbf{a b c}]}, \mathbf{q}=\frac{\mathbf{c} \times \mathbf{a}}{[\mathbf{a b c} \mathbf{b}}, \mathbf{r}=\frac{\mathbf{a} \times \mathbf{b}}{[\mathbf{a} \mathbf{b}]}$, then $(\mathbf{a}+\mathbf{b}) \cdot \mathbf{p}+(\mathbf{b}+\mathbf{c}) \cdot \mathbf{q}+(\mathbf{c}+\mathbf{a}) \cdot \mathbf{r}$ is
If lines $\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}$ and $\frac{x-1}{3 k}=\frac{y-5}{1}=\frac{z-6}{-5}$ are mutually perpendicular, then $k$ is equal to