Consider the following data for KCl solution at a particular temperature. What is the value of the limiting molar conductivity?
$$ \begin{array}{|c|c|} \hline \text { Concentration }\left(\mathrm{mol} \mathrm{~L}^{-1}\right) & \text { Molar Conductivity }\left(\mathrm{S} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\right) \\ \hline 1 \times 10^{-4} & 149.1 \\ \hline 9 \times 10^{-4} & 147.1 \\ \hline \end{array} $$
Consider the following lines in the $X Y$-plane:
$$ L_1: 5 x-2 y=1 $$
$L_2$ : The line passing through $(0,1)$ and $(100,101)$,
$L_3$ : The line passing through $(1,11)$ and parallel to the vector $-\hat{\imath}+2 \hat{\jmath}$.
Let $A=\left(L_1 \cap L_2\right) \cup\left(L_2 \cap L_3\right) \cup\left(L_3 \cap L_1\right)$. What is the total number of elements of $A$ ?
Consider the lines $L_1$ and $L_2$ given below:
$$ \begin{gathered} L 1: x=2+\lambda, y=3+2 \lambda, z=4+3 \lambda \\ L 2: x=4+\lambda, y=4, z=4+\lambda \end{gathered} $$
If $(2,3,4)$ is the point of $L_1$ that is closest to $L_2$, then which point of $L_2$ is closest to $L_1$ ?