1
COMEDK 2020
MCQ (Single Correct Answer)
+1
-0

If $$A = \left[ {\matrix{ 0 & x & {16} \cr x & 5 & 7 \cr 0 & 9 & x \cr } } \right]$$ is singular, then the possible values of x are

A
$$0,1,-1$$
B
$$0,+12,-12$$
C
$$0,5,-5$$
D
$$0,4,-4$$
2
COMEDK 2020
MCQ (Single Correct Answer)
+1
-0

If $$A = \left[ {\matrix{ 1 & { - 2} & 2 \cr 0 & 2 & { - 3} \cr 3 & { - 2} & 4 \cr } } \right]$$, then A . adj (A) is equal to

A
$$\left[ {\matrix{ 5 & 0 & 0 \cr 0 & 5 & 0 \cr 0 & 0 & 5 \cr } } \right]$$
B
$$\left[ {\matrix{ 5 & 1 & 1 \cr 1 & 5 & 1 \cr 1 & 1 & 5 \cr } } \right]$$
C
$$\left[ {\matrix{ 0 & 0 & 0 \cr 0 & 0 & 0 \cr 0 & 0 & 0 \cr } } \right]$$
D
$$\left[ {\matrix{ 8 & 0 & 0 \cr 0 & 8 & 0 \cr 0 & 0 & 8 \cr } } \right]$$
3
COMEDK 2020
MCQ (Single Correct Answer)
+1
-0

If $$f:R \to R$$ is defined by $$f(x) = |x|$$, then

A
$${f^{ - 1}}(x) = {1 \over {|x|}}$$
B
$${f^{ - 1}}(x) = - x$$
C
$${f^{ - 1}}(x) = {1 \over x}$$
D
The function $${f^{ - 1}}(x)$$ does not exist.
4
COMEDK 2020
MCQ (Single Correct Answer)
+1
-0

The value of $$\left| {\matrix{ x & p & q \cr p & x & q \cr p & q & x \cr } } \right|$$ is

A
$$(x - p)(x - q)(x + p + q)$$
B
$$x(x - p)(x - q)$$
C
$$pq(x - p)(x - q)$$
D
$$(p - q)(x - q)(x - p)$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12