The $$x$$-intercept of a plane $$\pi$$ passing through the point $$(1,1,1)$$ is $$\frac{5}{2}$$ and the perpendicular distance from the origin to the plane $$\pi$$ is $$\frac{5}{7}$$. If the $$y$$-intercept of the plane $$\pi$$ is negative and the $$z$$-intercept is positive, then its $$y$$-intercept is
Let $$f: R^{+} \longrightarrow R^{+}$$ be a function satisfying $$f(x)-x=\lambda$$ (constant), $$\forall x \in R^{+}$$ and $$f(x f(y))=f(x y)+x, \forall x, y, \in R^{+}$$. Then, $$\lim _\limits{x \rightarrow 0} \frac{(f(x))^{1 / 3}-1}{(f(x))^{1 / 2}-1}=$$
$$\begin{aligned} & \text { If } \lim _{x \rightarrow 0} \frac{|x|}{\sqrt{x^4+4 x^2+5}}=k \\ & \lim _{x \rightarrow 0} x^4 \sin \left(\frac{1}{3 \sqrt{x}}\right)=l \text {. Then, } k+l= \end{aligned}$$
If $$\lim _\limits{n \rightarrow \infty} x^n \log _e x=0$$, then $$\log _x 12=$$