State:
(a) Kohlrausch law of independent migration of ions.
(b) Faraday's first law of electrolysis.
Resistance of a conductivity cell filled with 0.2 mol $\mathrm{L}^{-1} \mathrm{KCl}$ solution is $200 \Omega$. If the resistance of the same cell when filled with $0.05 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{KCl}$ solution is 620 , calculate the conductivity and molar conductivity of $0.05 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{KCl}$ solution. The conductivity of 0.2 $\mathrm{mol} \mathrm{L}^{-1} \mathrm{KCl}$ solution is $0.0248 \mathrm{~S} \mathrm{~cm}^{-1}$.
(a) (i) What should be the signs (positive/ negative) for $$\mathrm{E}_{\text {Cell }}^0$$ and $$\Delta \mathrm{G}^0$$ for a spontaneous redox reaction occurring under standard conditions?
(ii) State Faraday's first law of electrolysis.
OR
(b) Calculate the emf of the following cell at $$298 \mathrm{~K}$$ :
$$\begin{aligned} & \mathrm{Fe}_{(\mathrm{s})}\left|\mathrm{Fe}^{2+}(0.01 \mathrm{M}) \| \mathrm{H}_{(1 \mathrm{M})}^{+}\right| \mathrm{H}_{2(\mathrm{~g})}(1 \mathrm{bar}), \mathrm{Pt}_{(\mathrm{s})} \\ & \text { Given } \mathrm{E}_{\mathrm{Cen}}^0=0.44 \mathrm{~V}. \end{aligned}$$