Chemical Kinetics · Chemistry · Class 12
MCQ (Single Correct Answer)
The following experimental rate data were obtained for a reaction carried out at $$25^{\circ} \mathrm{C}$$
$$A_{(g)}+B_{(g)} \rightarrow C_{(g)}+D_{(g)}$$
Initial $$\mathrm{[A_{(g)}]/mol~dm^{-3}}$$ | Initial $$\mathrm{[B_{(g)}]/mol~dm^{-3}}$$ | Initial rate/mol $$\mathrm{dm^{-3}s^{-1}}$$ |
---|---|---|
$$3.0 \times 10^{-2}$$ | $$2.0 \times 10^{-2}$$ | $$1.89 \times 10^{-4}$$ |
$$3.0 \times 10^{-2}$$ | $$4.0 \times 10^{-2}$$ | $$1.89 \times 10^{-4}$$ |
$$6.0 \times 10^{-2}$$ | $$4.0 \times 10^{-2}$$ | $$7.56 \times 10^{-4}$$ |
$$\text { What are the orders with respect to } \mathrm{A}_{(\mathrm{g})} \text { and } \mathrm{B}_{(\mathrm{g})} \text { ? }$$
Assertion (A): For a zero order reaction the unit of rate constant and rate of reaction are same.
Reason (R) : Rate of reaction for zero order reaction is independent of concentration of reactant.
Subjective
What happens to the rate constant $$k$$ and activation energy $$E_a$$ as the temperature of a chemical reaction is increased? Justify.
(a) For the reaction
$$2 \mathrm{~N}_2 \mathrm{O}_{5(\mathrm{~g})} \rightarrow 4 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \text { at } 318 \mathrm{~K}$$
Calculate the rate of reaction if rate of disappearance of $$\mathrm{N}_2 \mathrm{O}_{5(\mathrm{~g})}$$ is $$1.4 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-1}$$.
(b) For a first order reaction derive the relationship $$\mathbf{t}_{99 \%}=\mathbf{2} \mathbf{t}_{90 \%}$$