Continuity and Differentiability · Mathematics · Class 12
MCQ (Single Correct Answer)
If $x e^y=1$, then the value of $\frac{d y}{d x}$ at $x=1$ is
Derivative of $e^{\sin ^2 x}$ with respect to $\cos x$ is
The function $$f(x)=[x]$$, where $$[x]$$ denotes the greatest integer less than or equal to $$x$$, is continuous at:
If $$x=A \cos 4 t+B \sin 4 t$$, then $$\frac{d^2 x}{d t^2}$$ is equal to:
Subjective
(a) Verify whether the function $f$ defined by $f(x)=\left\{\begin{array}{cl}x \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{array}\right.$ is continuous at $x=0$ or not.
OR
(b) Check for differentiability of the function $f$ defined by $f(x)=|x-5|$, at the point $x=5$.
(a) Find $\frac{d y}{d x}$, , if $(\cos x)^y=(\cos y)^x$.
OR
(b) If $\sqrt{1-x^2}+\sqrt{1-y^2}=a(x-y)$, prove that $\frac{d y}{d x}=\sqrt{\frac{1-y^2}{1-x^2}}$.
(a) If $$f(x)=\left\{\begin{array}{ll}x^2, & \text { if } x \geq 1 \\ x, & \text { if } x<1\end{array}\right.$$, then show that $$f$$ is not differentiable at $$x=1$$.
OR
(b) Find the value(s) of '$$\lambda$$', if the function
$$f(x)=\left\{\begin{array}{cc} \frac{\sin ^2 \lambda x}{x^2}, & \text { if } x \neq 0 \\ 1, & \text { if } x=0 \end{array} \text { is continuous at } x=0 .\right.$$
(a) Differentiate $$\quad \sec ^{-1}\left(\frac{1}{\sqrt{1-x^2}}\right) \quad$$ w.r.t. $$\sin ^{-1}\left(2 x \sqrt{1-x^2}\right)$$.
OR
(b) If $$y=\tan x+\sec x$$, then prove that $$\frac{d^2 y}{d x^2}=\frac{\cos x}{(1-\sin x)^2}$$.