1
CBSE 12th Mathematics Delhi Set 1 - 2024
MCQ (Single Correct Answer)
+1
-0

If $A=\left[\begin{array}{ccc}a & c & -1 \\ b & 0 & 5 \\ 1 & -5 & 0\end{array}\right]$ is a skew-symmetric matrix, then the value of $2 a-(b+c)$ is

A
0
B
1
C
$-$10
D
10
2
CBSE 12th Mathematics Delhi Set 1 - 2024
MCQ (Single Correct Answer)
+1
-0

If $\left[\begin{array}{lll}x & 2 & 0\end{array}\right]\left[\begin{array}{c}5 \\ -1 \\ x\end{array}\right]=\left[\begin{array}{ll}3 & 1\end{array}\right]\left[\begin{array}{c}-2 \\ x\end{array}\right]$, then value of $x$ is

A
$-$1
B
0
C
1
D
2
3
CBSE 12th Mathematics Delhi Set 1 - 2024
MCQ (Single Correct Answer)
+1
-0

Find the matrix $\mathrm{A}^2$, where $A=\left[a_{i j}\right]$ is a $2 \times 2$ matrix whose elements are given by $a_{i j}=$ maximum $(i, j)-$ minimum $(i, j)$

A
$\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
B
$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
C
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
D
$\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
4
CBSE 12th Mathematics Delhi Set 1 - 2023
MCQ (Single Correct Answer)
+1
-0

If for a square matrix $$\mathrm{A}, A^2-A+I=\mathrm{O}$$, then $$\mathrm{A}^{-1}$$ equals:

A
$$\mathrm{A}$$
B
$$\mathrm{A}+\mathrm{I}$$
C
$$\mathrm{I}-\mathrm{A}$$
D
$$\mathrm{A}-\mathrm{I}$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12