1
BITSAT 2022
MCQ (Single Correct Answer)
+3
-1

Given 2x $$-$$ y + 2z = 2, x $$-$$ 2y - z = $$-$$4, x + y + $$\lambda$$z = 4, then the value of $$\lambda$$ such that the given system of equation has no solution is

A
$$-$$3
B
1
C
0
D
3
2
BITSAT 2022
MCQ (Single Correct Answer)
+3
-1

Let $$A = \left[ {\matrix{ 1 & { - 1} & 1 \cr 2 & 1 & { - 3} \cr 1 & 1 & 1 \cr } } \right]$$ and $$10B = \left[ {\matrix{ 4 & 2 & 2 \cr { - 5} & 0 & \alpha \cr 1 & { - 2} & 3 \cr } } \right]$$

If B is the inverse of A, then the value of $$\alpha$$ is

A
4
B
$$-$$4
C
3
D
5
3
BITSAT 2022
MCQ (Single Correct Answer)
+3
-1

If $$x \in \left( {0,{\pi \over 2}} \right)$$, then the value of $${\cos ^{ - 1}}\left( {{7 \over 2}(1 + \cos 2x) + \sqrt {({{\sin }^2}x - 48{{\cos }^2}x)\sin x} } \right)$$ is equal to

A
$$x - {\cos ^{ - 1}}(7\cos x)$$
B
$$x + {\sin ^{ - 1}}(7\cos x)$$
C
$$x + {\cos ^{ - 1}}(6\cos x)$$
D
$$x + {\cos ^{ - 1}}(7\cos x)$$
4
BITSAT 2022
MCQ (Single Correct Answer)
+3
-1

A running track of 440 ft is to be laid out enclosing a football field, the shape of which is a rectangle with a semi-circle at each end. If the area of the rectangular portion is to be maximum, then the lengths of its side are

A
70 ft and 110 ft
B
80 ft and 120 ft
C
35 ft and 110 ft
D
35 ft and 120 ft
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12