If $A$ is a square matrix of order 3 such that the value of $\mid$ adj. $A \mid=8$, then the value of $\left|\mathrm{A}^{\mathrm{T}}\right|$ is
If inverse of matrix $\left[\begin{array}{ccc}7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]$ is the matrix $\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & \lambda & 3 \\ 1 & 3 & 4\end{array}\right]$ then value of $\lambda$ is
If $\left[\begin{array}{lll}x & 2 & 0\end{array}\right]\left[\begin{array}{c}5 \\ -1 \\ x\end{array}\right]=\left[\begin{array}{ll}3 & 1\end{array}\right]\left[\begin{array}{c}-2 \\ x\end{array}\right]$, then value of $x$ is
Find the matrix $\mathrm{A}^2$, where $A=\left[a_{i j}\right]$ is a $2 \times 2$ matrix whose elements are given by $a_{i j}=$ maximum $(i, j)-$ minimum $(i, j)$