1
GATE IN 2013
MCQ (Single Correct Answer)
+1
-0.3
While numerically solving the differential equation $$\,{{dy} \over {dx}} + 2x{y^2} = 0,y\left( 0 \right) = 1\,\,$$ using Euler's predictor corrector (improved Euler- Cauchy) method with a step size of $$0.2,$$ the value of $$y$$ after the first step is
A
$$1.00$$
B
$$1.03$$
C
$$0.97$$
D
$$0.96$$
2
GATE IN 2008
MCQ (Single Correct Answer)
+1
-0.3
It is known that two roots of the non-linear equation $$\,{x^3} - 6{x^2} + 11x - 6 = 0\,\,$$ are $$1$$ and $$3.$$ The third root will be
A
$$j$$
B
$$-j$$
C
$$2$$
D
$$4$$
3
GATE IN 2007
MCQ (Single Correct Answer)
+1
-0.3
Identity the Newton $$-$$ Raphson iteration scheme for the finding the square root of $$2$$
A
$${x_{n + 1}} = {1 \over 2}\left( {{x_n} + {2 \over {{x_n}}}} \right)$$
B
$${x_{n + 1}} = {1 \over 2}\left( {{x_n} - {2 \over {{x_n}}}} \right)$$
C
$${x_{n + 1}} = {2 \over {{x_n}}}$$
D
$${x_{n + 1}} = \sqrt {2 + {x_n}} $$
4
GATE IN 2007
MCQ (Single Correct Answer)
+1
-0.3
The polynomial $$\,p\left( x \right) = {x^5} + x + 2\,\,$$ has
A
all real roots
B
$$3$$ real and $$2$$ complex roots
C
$$1$$ real and $$4$$ complex roots
D
all complex roots
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12