1
GATE IN 2012
MCQ (Single Correct Answer)
+2
-0.6
Consider the differential equation
$${{{d^2}y\left( t \right)} \over {d{t^2}}} + 2{{dy\left( t \right)} \over {dt}} + y\left( t \right) = \delta \left( t \right)$$
with $$y\left( t \right)\left| {_{t = 0} = - 2} \right.$$ and $${{dy} \over {dt}}\left| {_{t = 0}} \right. = 0.$$
$${{{d^2}y\left( t \right)} \over {d{t^2}}} + 2{{dy\left( t \right)} \over {dt}} + y\left( t \right) = \delta \left( t \right)$$
with $$y\left( t \right)\left| {_{t = 0} = - 2} \right.$$ and $${{dy} \over {dt}}\left| {_{t = 0}} \right. = 0.$$
The numerical value of $${{dy} \over {dt}}\left| {_{t = 0}.} \right.$$ is
2
GATE IN 2010
MCQ (Single Correct Answer)
+2
-0.6
The integral $$\int\limits_{ - \alpha }^\alpha \delta \left( {t - {\pi \over 6}} \right)6\,\sin \,\left( t \right)dt$$ evaluates to
Questions Asked from Transform Theory (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE IN Subjects