1
GATE IN 2005
MCQ (Single Correct Answer)
+1
-0.3
Consider the circle $$\left| {z\, - 5\, - 5i} \right|\, = \,2$$ in the complex number plane (x, y) with z = x + iy. The minimum distance from the origin to the circle is
A
$$5\sqrt 2 - 2$$
B
$$\sqrt {54} $$
C
$$\sqrt {34} $$
D
$$5\sqrt 2 $$
2
GATE IN 2005
MCQ (Single Correct Answer)
+1
-0.3
Let $${z^3}\, = \,\overline z $$, where z is a complex number not equal to zero. Then z is a solution of
A
$${z^2} = 1$$
B
$${z^3} = 1$$
C
$${z^4} = 1$$
D
$${z^9} = 1$$
3
GATE IN 2002
MCQ (Single Correct Answer)
+1
-0.3
The bilinear transformation $$w\, = \,{{z\, - \,1} \over {z\, + \,1}}$$
A
maps the inside of the unit circle in the z-plane to left half of the w - plane
B
maps the outside of the unit circle in the z-plane to left half of the w - plane
C
maps the inside of the unit circle in the z-plane to right half of the w - plane
D
maps the outside of the unit circle in the z-plane to right half of the w - plane
4
GATE IN 1997
MCQ (Single Correct Answer)
+1
-0.3
The complex number $$z\, = \,x\, + \,jy$$ which satisfy the equation $$\left| {z + 1} \right|\, = \,1$$ lie on
A
a circle with ( 1, 0 ) as the center and radius 1
B
a circle with ( - 1, 0 ) as the center and radius 1
C
y-axis
D
x-axis
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12