1
GATE IN 2006
MCQ (Single Correct Answer)
+2
-0.6
A system of linear simultaneous equations is given as $$AX=b$$
where $$A = \left[ {\matrix{ 1 & 0 & 1 & 0 \cr 0 & 1 & 0 & 1 \cr 1 & 1 & 0 & 0 \cr 0 & 0 & 0 & 1 \cr } } \right]\,\,\& \,\,b = \left[ {\matrix{ 0 \cr 0 \cr 0 \cr 1 \cr } } \right]$$
where $$A = \left[ {\matrix{ 1 & 0 & 1 & 0 \cr 0 & 1 & 0 & 1 \cr 1 & 1 & 0 & 0 \cr 0 & 0 & 0 & 1 \cr } } \right]\,\,\& \,\,b = \left[ {\matrix{ 0 \cr 0 \cr 0 \cr 1 \cr } } \right]$$
Then the rank of matrix $$A$$ is
2
GATE IN 2006
MCQ (Single Correct Answer)
+2
-0.6
For a given $$2x2$$ matrix $$A,$$ it is observved that $$A\left[ {\matrix{
1 \cr
{ - 1} \cr
} } \right] = - 1\left[ {\matrix{
1 \cr
{ - 1} \cr
} } \right]$$ and
$$A\left[ {\matrix{ 1 \cr { - 2} \cr } } \right] = - 2\left[ {\matrix{ 1 \cr { - 2} \cr } } \right]$$ then the matrix $$A$$ is
$$A\left[ {\matrix{ 1 \cr { - 2} \cr } } \right] = - 2\left[ {\matrix{ 1 \cr { - 2} \cr } } \right]$$ then the matrix $$A$$ is
3
GATE IN 2006
MCQ (Single Correct Answer)
+2
-0.6
For initial value problem $$\,\mathop y\limits^{ \bullet \bullet } + 2\,\mathop y\limits^ \bullet + \left( {101} \right)y = \left( {10.4} \right){e^x},y\left( 0 \right) = 1.1\,\,$$ and $$y(0)=-0.9.$$ Various solutions are written in the following groups. Match the type of solution with the correct expression.
Group-$${\rm I}$$
$$P.$$$$\,\,\,\,$$ General solution of Homogeneous equations
$$Q.$$$$\,\,\,\,$$ Particular integral
$$R.$$$$\,\,\,\,$$ Total solution satisfying boundary Conditions
Group-$${\rm II}$$
$$(1)$$$$\,\,\,\,$$ $$0.1\,{e^x}$$
$$(2)$$$$\,\,\,\,$$ $$\,{e^{ - x}}\left[ {A\,\cos \,10x + B\,\sin \,10x} \right]$$
$$(3)$$$$\,\,\,\,$$ $${e^{ - x}}\,\cos \,10x + 0.1\,{e^x}$$
Paper analysis
Total Questions
Engineering Mathematics
4
GATE IN
Papers
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2002
2001
2000
1999
1997
1995
1994