1
GATE IN 2005
MCQ (Single Correct Answer)
+1
-0.3
Identity which one of the following is an eigen vectors of the matrix $$A = \left[ {\matrix{ 1 & 0 \cr { - 1} & { - 2} \cr } } \right]$$
A
$${\left[ {\matrix{ { - 1} & 1 \cr } } \right]^T}$$
B
$${\left[ {\matrix{ { 3} & -1 \cr } } \right]^T}$$
C
$${\left[ {\matrix{ { 1} & -1 \cr } } \right]^T}$$
D
$${\left[ {\matrix{ { - 2} & 1 \cr } } \right]^T}$$
2
GATE IN 2005
MCQ (Single Correct Answer)
+1
-0.3
Let $$A$$ be $$3 \times 3$$ matrix with rank $$2.$$ Then $$AX=O$$ has
A
only the trivial solution $$X=O$$
B
one independent solution
C
two independent solutions
D
three independent solutions
3
GATE IN 2005
MCQ (Single Correct Answer)
+1
-0.3
The value of the integral $$\int\limits_{ - 1}^1 {{1 \over {{x^2}}}dx} \,\,\,$$ is
A
$$2$$
B
does not exist
C
$$-2$$
D
$$ \propto $$
4
GATE IN 2005
MCQ (Single Correct Answer)
+1
-0.3
$$f = {a_0}\,{x^n} + {a_1}\,{x^{n - 1}}\,y + - - + \,{a_{n - 1}}\,x\,{y^{n - 1}} + {a_n}\,{y^n}$$
where $$\,\,{a_i}\,\,$$ ($$i=0$$ to $$n$$) are constants then $$x{{\partial f} \over {\partial x}} + y{{\partial f} \over {\partial y}}\,\,\,$$ is
A
$${f \over n}$$
B
$${n \over f}$$
C
$$n$$ $$f$$
D
$$n\sqrt f $$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12