1
JEE Main 2023 (Online) 29th January Evening Shift
+4
-1 If the lines $${{x - 1} \over 1} = {{y - 2} \over 2} = {{z + 3} \over 1}$$ and $${{x - a} \over 2} = {{y + 2} \over 3} = {{z - 3} \over 1}$$ intersect at the point P, then the distance of the point P from the plane $$z = a$$ is :

A
28
B
22
C
10
D
16
2
JEE Main 2023 (Online) 29th January Evening Shift
+4
-1 Let K be the sum of the coefficients of the odd powers of $$x$$ in the expansion of $$(1+x)^{99}$$. Let $$a$$ be the middle term in the expansion of $${\left( {2 + {1 \over {\sqrt 2 }}} \right)^{200}}$$. If $${{{}^{200}{C_{99}}K} \over a} = {{{2^l}m} \over n}$$, where m and n are odd numbers, then the ordered pair $$(l,\mathrm{n})$$ is equal to

A
(50, 101)
B
(50, 51)
C
(51, 101)
D
(51, 99)
3
JEE Main 2023 (Online) 29th January Evening Shift
+4
-1 The set of all values of $$\mathrm{t\in \mathbb{R}}$$, for which the matrix

$$\left[ {\matrix{ {{e^t}} & {{e^{ - t}}(\sin t - 2\cos t)} & {{e^{ - t}}( - 2\sin t - \cos t)} \cr {{e^t}} & {{e^{ - t}}(2\sin t + \cos t)} & {{e^{ - t}}(\sin t - 2\cos t)} \cr {{e^t}} & {{e^{ - t}}\cos t} & {{e^{ - t}}\sin t} \cr } } \right]$$ is invertible, is :

A
$$\left\{ {k\pi ,k \in \mathbb{Z}} \right\}$$
B
$$\mathbb{R}$$
C
$$\left\{ {(2k + 1){\pi \over 2},k \in \mathbb{Z}} \right\}$$
D
$$\left\{ {k\pi + {\pi \over 4},k \in \mathbb{Z}} \right\}$$
4
JEE Main 2023 (Online) 29th January Evening Shift
+4
-1 The value of the integral $$\int\limits_{1/2}^2 {{{{{\tan }^{ - 1}}x} \over x}dx}$$ is equal to :

A
$${\pi \over 2}{\log _e}2$$
B
$${\pi \over 4}{\log _e}2$$
C
$${1 \over 2}{\log _e}2$$
D
$$\pi {\log _e}2$$
EXAM MAP
Joint Entrance Examination