1

IIT-JEE 2009

MCQ (Single Correct Answer)
The locus of the orthocentre of the triangle formed by the lines $$$\left( {1 + p} \right)x - py + p\left( {1 + p} \right) = 0,$$$ $$$\left( {1 + q} \right)x - qy + q\left( {1 + q} \right) = 0,$$$
and $$y=0$$, where $$p \ne q,$$ is
A
a hyperbola
B
a parabola
C
an ellipse
D
a straight line
2

IIT-JEE 2009

MCQ (Single Correct Answer)
The normal at a point $$P$$ on the ellipse $${x^2} + 4{y^2} = 16$$ meets the $$x$$- axis $$Q$$. If $$M$$ is the mid point of the line segment $$PQ$$, then the locus of $$M$$ intersects the latus rectums of the given ellipse at the points
A
$$\left( { \pm {{3\sqrt 5 } \over 2},\, \pm {2 \over 7}} \right)$$
B
$$\left( { \pm {{3\sqrt 5 } \over 2},\, \pm \sqrt {{{19} \over 4}} } \right)$$
C
$$\left( { \pm 2\sqrt 3 , \pm {1 \over 7}} \right)$$
D
$$\left( { \pm 2\sqrt 3 , \pm {{4\sqrt 3 } \over 7}} \right)$$
3

IIT-JEE 2009

MCQ (Single Correct Answer)
The line passing through the extremity $$A$$ of the major axis and extremity $$B$$ of the minor axis of the ellipse $${x^2} + 9{y^2} = 9$$ meets its auxiliary circle at the point $$M$$. Then the area of the triangle with vertices at $$A$$, $$M$$ and the origin $$O$$ is
A
$${{31} \over {10}}$$
B
$${{29} \over {10}}$$
C
$${{21} \over {10}}$$
D
$${{27} \over {10}}$$
4

IIT-JEE 2008

MCQ (Single Correct Answer)
Consider a branch of the hyperbola $$${x^2} - 2{y^2} - 2\sqrt 2 x - 4\sqrt 2 y - 6 = 0$$$

with vertex at the point $$A$$. Let $$B$$ be one of the end points of its latus rectum. If $$C$$ is the focus of the hyperbola nearest to the point $$A$$, then the area of the triangle $$ABC$$ is

A
$$1 - \sqrt {{2 \over 3}} $$
B
$$\sqrt {{3 \over 2}} - 1$$
C
$$1 + \sqrt {{2 \over 3}} $$
D
$$\sqrt {{3 \over 2}} + 1$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12