$$f(x) = {x^3} + x - 5$$ and $$f\left( {g(x)} \right) = x$$ and $$g'(63)=$$
Given, $$f\left( {g(x)} \right) = x$$
$$g(x) = {f^{ - 1}}(x)$$
$$ \Rightarrow {d \over {dx}}g(x) = {d \over {dx}}{f^{ - 1}}(x)$$
$$ \Rightarrow {d \over {dx}}{f^{ - 1}}{(x)_{at\,x = 63}} = {1 \over {{d \over {dx}}f{{(x)}_{at\,x = 4}}}}$$
$$ = {1 \over {{{(3{x^2} + 1)}_{at\,x = 4}}}}$$
$$ = {1 \over {49}}$$