1
GATE PI 2003
MCQ (Single Correct Answer)
+5
-1.5
The following data refers to an orthogonal machining of mild steel with a single point $$HSS$$ tool. Rake angle of tool $$ = {10^ \circ },$$ uncut chip thickness $$=0.3mm,$$ width of cut $$=2.0mm,$$ single plane shear angle $$ = {36^ \circ },$$ shear strength of mild steel $$=450$$ $$MPa,$$ using Merchants analysis

The coefficient of friction between the chip and tool will be

A
$$0.141$$
B
$$0.344$$
C
$$0.532$$
D
$$0.688$$
2
GATE PI 2003
MCQ (Single Correct Answer)
+5
-1.5
The following data refers to an orthogonal machining of mild steel with a single point $$HSS$$ tool. Rake angle of tool $$ = {10^ \circ },$$ uncut chip thickness $$=0.3mm,$$ width of cut $$=2.0mm,$$ single plane shear angle $$ = {36^ \circ },$$ shear strength of mild steel $$=450$$ $$MPa,$$ using Merchants analysis

The shear force in cutting will be

A
$$270$$ $$N$$
B
$$333.75$$
C
$$450$$ $$N$$
D
$$459.34$$ $$N$$
3
GATE PI 2002
Subjective
+5
-0
A cutting tool is designated in 'Orthogonal Rake System' as: $$${0^ \circ } - {0^ \circ } - {6^ \circ } - {6^ \circ } - {25^ \circ } - {75^ \circ } - 0.8\,\,mm.$$$
The following data were given
$${S_0} = $$ feed $$=0.12$$ $$mm/rev$$
$$T=$$ depth of cut $$=2.0$$ $$mm$$
$${a_2} = $$ chip thickness $$=0.22$$ $$mm$$
$${V_f} = $$ chip velocity $$=52.6$$ $$m/min$$
$${\tau _s} = $$ dynamic yield shear strength $$=400$$ $$MPa$$
$${P_z} = $$ main cutting force $$ = {S_0}\,t\,{\tau _s}\left( {\zeta \,\sec y - \tan \gamma + 1} \right)$$

Where $$\zeta = $$ chip reduction coefficient and $$\gamma = $$ orthogonal rake.
The main cutting force $$\left( {{P_z}} \right)$$ and cutting power assuming orthogonal machining are

4
GATE PI 2001
Subjective
+5
-0
Tool life in drilling steel using $$HSS$$ drill is expressed as $${T^{0.2}} = 9.8\,\,{D^{0.4}}\,\,/\,\,V\,{s^{0.5}}$$ where $$D$$ is the drill diameter (in $$mm$$), $$T$$ is the tool life (in minutes), $$V$$ is the cutting speed (in $$m/min$$) and $$s$$ is the feed ($$mm/rev$$). The feed is set at maximum possible value of $$0.4$$ $$mm/rev$$ for a given drill diameter of $$30mm.$$ The length of drilling is $$50mm.$$ The machine hour rate Rs $$60$$ and the cost of drill is Rs. $$400.$$

$$i)$$ For the given conditions, the tailor's exponent and constant are .............
$$ii)$$ The optimum cutting speed, $${V_{opt}},$$ neglecting the work-piece and tool changing times is

EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12